

CHEMISTRY-NEUTRAL APPROACH

Kick-off meeting BATTERY 2030+ *LC-BAT-13 - INSTABAT* M. Priour / F. Rive

CLIMATE-NEUTRAL SOCIETY

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 957213.

PROJECT PRESENTATION

Development of a proof of concept of smart sensing technologies and functionalities, integrated into a battery cell

PROJECT PRESENTATION

INSTABAT multi-sensor platform (or "lab-on-a-cell") will be capable of:

performing reliable in operando monitoring of key parameters
Temperature and heat flow; pressure; strain; Li⁺ concentration and distribution; CO₂

concentration; "absolute" impedance, potential and polarization

• **four embedded physical sensors** (optical fibers with Fiber Bragg Grating and luminescence probes, reference electrode and photo-acoustic gas sensor),

o two virtual sensors (based on electro-chemical and thermal reduced models).

PROJECT PRESENTATION

INSTABAT multi-sensor platform will also be capable of:

• correlating the evolution of these parameters with the physico-chemical degradation phenomena occurring at the heart of the battery cell

Sensor	Measured/estimated parameters	rameters Physico-chemical phenomena		
OF/ FBG	Temperature, strain, pressure	Solid Electrolyte Interphase (SEI) growth, internal resistance increase, capacity loss		
RE	"Absolute" electro-chemical potential, impedance and polarization	Lithium plating SEI/CEI growth on each electrode Electrolyte degradation		
OF/ LumT	Temperature	SEI growth, internal resistance increase		
OF/ LumL	Li ⁺ concentration	Electrolyte degradation Lithium plating Loss of active material		
PA	CO ₂ concentration	CO ₂ gas released from electrolyte decomposition		
E-BASE	Li ⁺ concentration, "absolute" potential and polarization	Electrolyte polarization, lithium plating and irreversible electro-chemical reactions		
T-BASE	Temperature	Electrolyte degradation, capacity fade, ageing and thermal runaway		

INSTABAT PROJECT PRESENTATION

INSTABAT multi-sensor platform will also allow:

 improving the battery functional performance and safety, thanks to BMS algorithms providing in real-time higher accuracy States of Charge, Health, Power, Energy and Safety (taking the measured and estimated parameters into consideration)

Two use cases:

- cycling at extreme conditions
- high-power charging for Electric Vehicles (EV) applications

CONCEPT

METHODOLOGY

BATTERY CONSORTIUM AND ROLES -)

liten

VIRTU

2 T-BASE

UAVR

Physical/ Partners

de aveiro

Estimator (reduced

model at cell level)

faurecia VARTA INSA LAST INSA

Physico-chemical phenomena

fade, ageing and thermal

runaway

	#	Virtual sensor	involved	Technology	Measured/Estimated parameters	to be correlated with sensors output
PHYSICAL SENSORS	1	OF/FBG	CNRS, UAVR	Optical Fiber / Fiber Bragg Grating	Temperature and heat flow, pressure, strain	Solid Electrolyte Interphase (SEI) growth, internal resistance increase, capacity loss
	2	RE	CNRS, IFAG, CEA	Reference Electrode	"Absolute" potential, impedance and polarization	Lithium plating, internal resistance and SEI / CEI (Cathode Electrolyte Interface) growth on each electrode
	3	OF/LumT OF/LumL	CEA	Optical Fiber / Luminescence	Temperature, Li⁺ concentration	SEI growth, internal resistance increase, capacity loss, lithium plating, loss of active materials
	4	ΡΑ	IFAG	Photo-Acoustic	CO ₂ concentration	Ageing, CO ₂ gas released from electrolyte decomposition giving information about the SEI formation, safety-critical situations
SENSORS	1	E-BASE	INSA	Electro-chemical BAttery State Estimator (reduced model at electrode level)	Li ⁺ concentration and distribution, "absolute" potential and polarization	Electrolyte polarization, lithium plating, irreversible electro- chemical reactions
JAL				Thermal BAttery State		Electrolyte degradation, capacity

Temperature

4 academic partners:

- CNRS Collège de France (FR) ٠
- INSA de Lyon (FR) ٠
- University of Aveiro (PT) ۲
- CEA (FR) •

4 industrial partners:

- INFINEON Technology (DE) ٠
- Faurecia (FR) ۲
- Varta Micro Innovation (AT) ٠
- BMW (DE) ٠

Models	1D+1D electrode model	CEA
	p3D cell model	CEA
	3D thermal cell model	Faurecia
Correlation	Correlation with degradation phenomena	CNRS
BMS algos	BMS SoX cell indicators	CEA
Exploitation	Techno-economic feasibility, adaptability to different cell markets, environmental consideration	Faurecia, BMW, Varta

2 D LINKS WITH BATTERY 2030+

Main contributions from INSTABAT to Battery 2030+ are:

- (1) identify triggers for self-healing thanks to INSTABAT multi-sensor platform
- (2) facilitate **autonomous discovery of advanced battery chemistries** by two means:
 - sharing battery key parameters **datasets** (e.g., from the use cases)
 - designing our platform so that it can also be used as an in operando characterisation platform for battery materials
- (3) work towards a common strategy for results exploitation and IPR management
- (4) contribute to common education / communication / dissemination actions

Main benefits from the collaboration with Battery 2030+ are:

- (1) discuss our potential difficulties with the other LC-BAT-13 projects, exchange best practices with them
- (2) see beyond our project by exploring the integration of self-healing capabilities within the INSTABAT platform

Thank you for your attention

Contact: maud.priour@cea.fr

CLIMATE-NEUTRAL SOCIETY

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 957213.